The University of Massachusetts Amherst
University of Massachusetts Amherst

Search Google Appliance


Foundation damping and the dynamics of offshore wind turbine monopiles

TitleFoundation damping and the dynamics of offshore wind turbine monopiles
Publication TypeJournal Article
Year of Publication2015
AuthorsCarswell W, Johansson J., Løvholt F., Arwade SR, Madshus C., Degroot DJ, Myers AT
JournalRenewable Energy
Start Page724
Date Published08/2015
KeywordsDamping, Monopile, Offshore wind turbine, Soil-structure interaction

The contribution of foundation damping to offshore wind turbines (OWTs) is not well known, though researchers have back-calculated foundation damping from “rotor-stop” tests after estimating aerodynamic, hydrodynamic, and structural damping with numerical models. Because design guidelines do not currently recommend methods for determining foundation damping, it is typically neglected. This paper investigates the significance of foundation damping on monopile-supported OWTs subjected to extreme storm loading using a linear elastic two-dimensional finite element model. The effect of foundation damping primarily on the first natural frequency of the OWT was considered as OWT behavior is dominated by the first mode under storm loading. A simplified foundation model based on the soil-pile mudline stiffness matrix was used to represent the monopile, hydrodynamic effects were modeled via added hydrodynamic mass, and 1.00% Rayleigh structural damping was assumed. Hysteretic energy loss in the foundation was converted into a viscous, rotational dashpot at the mudline to represent foundation damping. Using the logarithmic decrement method on a finite element free vibration time history, 0.17%-0.28% of critical damping was attributed to foundation damping. Stochastic time history analysis of extreme storm conditions indicated that mudline OWT foundation damping decreases the maximum and standard deviation of mudline moment by 7–9%.