The University of Massachusetts Amherst
University of Massachusetts Amherst

Search Google Appliance


Steady, annual, and monthly recharge implied by deep unconfined aquifer flow

TitleSteady, annual, and monthly recharge implied by deep unconfined aquifer flow
Publication TypeJournal Article
Year of Publication2004
AuthorsOstendorf DW, Rees PLS, Kelley SP, Lutenegger AJ
JournalJournal of Hydrology
Start Page259
Date Published05/2004
KeywordsEvapotranspiration, Isotopes, precipitation, Recharge, Unconfined aquifers

We consider the response of a deep unconfined horizontal aquifer to steady, annual, and monthly recharge. A groundwater divide and a zero head reservoir constrain the aquifer, so that sinusoidal monthly and aperiodic annual recharge fluctuations create transient specific discharge near the reservoir and an unsteady water table elevation inland. One existing and two new long-term data sets from the Plymouth-Carver Aquifer in southeastern Massachusetts calibrate and confirm hydraulic properties in a set of analytical models. [Geohydrology and simulated groundwater flow, 1992] data and a new power law for tritiugenic helium to tritium ratios calibrate the steady recharge that drives the classical parabolic model of steady hydraulics [Applied Hydrogeology, 2001]. Observed water table and gradient fluctuations calibrate the transient recharge models. In the latter regard, monitoring wells within 1 km of Buttermilk Bay exhibit appreciable specific discharge and reduced water table fluctuations. We apply [Trans Am Geophys Union 32(1951)238] periodic model to the monthly hydraulics and a recharge convolution integral [J Hydrol 126(1991)315] to annual flow. An infiltration fraction of 0.79 and a consumptive use coefficient of 1.08×10−8 m/s °C relate recharge to precipitation and daylight weighted temperature across all three time scales. Errors associated with this recharge relation decrease with increasing time scale.