The University of Massachusetts Amherst
University of Massachusetts Amherst

Search Google Appliance

Links

Removal of arsenic from high ionic strength solutions: effects of ionic strength, pH, and preformed versus in situ formed HFO

TitleRemoval of arsenic from high ionic strength solutions: effects of ionic strength, pH, and preformed versus in situ formed HFO
Publication TypeJournal Article
Year of Publication2008
AuthorsMercer K.L., Tobiason JE
JournalEnvironmental Science & Technology
Volume42
Issue10
Start Page3797
Pagination3797-3802
Date Published05/2008
Abstract

Arsenic sorption to hydrous ferric oxide (HFO) is an effective treatment method for removing dissolved arsenic from fresh drinking water sources. However, detailed information is limited regarding arsenic removal from solutions of high ionic strength such as brackish groundwater, seawater, or high-pressure membrane process residuals. Bench-scale treatment experiments were conducted exploring arsenic removal from simple solutions with ionic strengths ranging from 0.008 to 1.5 M by addition of ferric chloride followed by solid/liquid separation (microfiltration or ultrafiltration). Arsenic removal from these solutions during in situ iron precipitation was approximately 90% at Fe:As molar ratios of 10 to 15 and > 95% for Fe:As molar ratios greater than 20. Arsenic removal at iron doses of 10(-6) to 10(-4) mol-Fe/L improved when pH was lowered from 8 to less than 6.5 at ionic strength 0.2 M; this improvement was not as significant at ionic strength 0.7 M. Arsenic removal diminished when alkalinity was increased from 400 to 1,400 mg/L as calcium carbonate; however, arsenic removal at the higher alkalinity improved when pH was lowered from approximately 8 to less than 7. Arsenic removal with preformed HFO solids and subsequent microfiltration was significantly less than that observed with in situ HFO precipitation. Increased removal by in situ precipitation compared to that of preformed solids is explained by an increased number of adsorption sites due to uptake during iron oxy-hydroxide polymerization as well as an increase in surface area resulting in diminished surface charge effects. Model simulations of arsenic uptake by in situ precipitation adequately captured these effect by changing the model parameters used to model arsenic uptake by preformed HFO, specificallythe total number of surface sites and surface area.

DOI10.1021/es702946s