The University of Massachusetts Amherst
University of Massachusetts Amherst

Search Google Appliance

Links

Paleo-reconstructed net basin supply scenarios and their effect on lake levels in the upper great lakes

TitlePaleo-reconstructed net basin supply scenarios and their effect on lake levels in the upper great lakes
Publication TypeJournal Article
Year of Publication2014
AuthorsGhile Y, Moody P, Brown C
JournalClimatic Change
Volume127
Issue2
Start Page305
Pagination305-319
Date Published09/2014
ISSN0165-0009
Abstract

Paleo-reconstructed hydrologic records offer the potential to evaluate water resources system performance under conditions that may be more extreme than seen in the historical record. This study uses a stochastic simulation framework consisting of a non-homogeneous Markov chain model (NHMM) to simulate the climate state using Palmer Drought Severity Index (PDSI)-reconstructed data, and K-nearest neighbor (K-NN) to resample observational net basin supply magnitudes for the Great Lakes of North America. The method was applied to generate 500 plausible simulations, each with 100 years of monthly net basin supply for the Upper Great Lakes, to place the observed data into a longer temporal context. The range of net basin supply sequences represents what may have occurred in the past 1,000 years and which can occur in future. The approach was used in evaluation of operational plans for regulation of Lake Superior outflows with implications for lake levels of Superior, Michigan, Huron and Erie, and their interconnecting rivers. The simulations generally preserved the statistics of the observed record while providing new variability statistics. The framework produced a variety of high and low net basin supply sequences that provide a broader estimate of the likelihood of extreme lake levels and their persistence than with the historical record. The method does not rely on parametrically generated net basin supply values unlike parametric stochastic simulation techniques, yet still generates new variability through the incorporation of the paleo-record. The process described here generated new scenarios that are plausible based on the paleo and historic record. The evaluation of Upper Great Lakes regulation plans, subject to these scenarios, was used to evaluate robustness of the regulation plans. While the uncertain future climate cannot be predicted, one can evaluate system performance on a wide range of plausible climate scenarios.

DOI10.1007/s10584-014-1251-8